A deep neural network based feature fusion panoramic segmentation method
نویسندگان
چکیده
Abstract Segmentation of complex and diverse scenes in the field machine vision has advantages low cost good robustness. However, real open intelligent driving scene, segmented object will be affected by change proportion illumination. The feature extraction interference algorithm causes some problems such as local information loss background fusion process execution. In this paper, deep neural network method is used for panoramic segmentation. It focuses on premise lightweight, improves performance improving structure semantic segmentation layer model calculation effect, reducing number parameters calculations, so to further improve detection performance. At same time, with gradual deepening learning architecture, but most embedded devices can not bear a huge amount computing workload. An attentional channel pruning based approach proposed using wide range experimental ablation studies compare different data, including VOC2012 ImageNet datasets. We show that outperforms state art methods terms visual quality.
منابع مشابه
An efficient method for cloud detection based on the feature-level fusion of Landsat-8 OLI spectral bands in deep convolutional neural network
Cloud segmentation is a critical pre-processing step for any multi-spectral satellite image application. In particular, disaster-related applications e.g., flood monitoring or rapid damage mapping, which are highly time and data-critical, require methods that produce accurate cloud masks in a short time while being able to adapt to large variations in the target domain (induced by atmospheric c...
متن کاملA conjugate gradient based method for Decision Neural Network training
Decision Neural Network is a new approach for solving multi-objective decision-making problems based on artificial neural networks. Using inaccurate evaluation data, network training has improved and the number of educational data sets has decreased. The available training method is based on the gradient decent method (BP). One of its limitations is related to its convergence speed. Therefore,...
متن کاملDeep Neural Network Based Feature Representation for Weather Forecasting
This paper concentrated on a new application of Deep Neural Network (DNN) approach. The DNN, also widely known as Deep Learning(DL), has been the most popular topic in research community recently. Through the DNN, the original data set can be represented in a new feature space with machine learning algorithms, and intelligence models may have the chance to obtain a better performance in the “le...
متن کاملA Segmentation-aware Deep Fusion Network for Compressed Sensing MRI
Compressed sensing MRI is a classic inverse problem in the field of computational imaging, accelerating the MR imaging by measuring less k-space data. The deep neural network models provide the stronger representation ability and faster reconstruction compared with ”shallow” optimization-based methods. However, in the existing deepbased CS-MRI models, the high-level semantic supervision informa...
متن کاملSegmentation of the Left Atrial Appendage in the Echocardiographic Images of the Heart Using a Deep Neural Network
Introduction: Cardiovascular diseases are one of the leading causes of mortality in today’s industrial world. Occlusion of left atrial appendage (LAA) using the manufactured devices is a growing trend. The objective of this study was to develop a computer-aided diagnosis system for the identification of LAA in echocardiographic images. Method: The data used in this descriptive analytical study ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2023
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2467/1/012006